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Abstract

Remote monitoring of wildlife has a long history in ecological research but recent
advances in technology have extended the possibilities of remote sensing methods,
making camera systems more easily accessible, of higher resolution, and more
relevant to a greater range of research interests. Time-lapse photography is most
applicable to study animals frequently present at a photographed location or to
study frequently repeated behaviours. Therefore, time-lapse photography methods
are particularly relevant to study colonial animals at fixed locations. Here, | review
literature using time-lapse photography methods in the context of their application
to seabirds, focusing on distinct research aims. Cameras can be used to observe
seabird behaviour in places or during times when human observation would be
nearly impossible, including in remote locations, at night using infrared, and during
harsh weather conditions. However, cameras are prone to mechanical failures and
programming errors and need regular maintenance, depending on the frequency of
photographs. Although many studies have used time-lapse photography techniques
to understand seabird ecology, researchers can expand their study aims by
examining how research on other taxa has used camera traps. In addition, as
efficiency increases, demands for camera systems also increase; therefore, it is
necessary to standardise data collection across sites and species to improve
comparability across studies. Overall, for the study of colonial wildlife, time-lapse
photography proves to be a cost-effective, relatively non-invasive method, which
can help researchers save time during fieldwork when this is often limited.

Introduction

Recent technological advances in the remote monitoring of wildlife have extended
the possibilities of remote sensing methods, making camera systems both easily
accessible and relevant to a greater range of research interests (Swann et al. 2011).
Traditionally, cameras have focused on photographing one individual, identified by
distinct markings, by either taking motion-triggered photographs or using hand-
held devices to study an animal opportunistically (Cutler & Swann 1999).
However, in cases where wildlife can be photographed in groups, alternative
methods may prove more effective in terms of data output, time in the field, and
expense. In particular, time-lapse photography, defined here as a camera system
installed at a field site and programmed to take an image at a set frequency, has
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recently become more accessible to researchers and has great capabilities for the
study of animals living in groups. To demonstrate these abilities and highlight
possible limitations of time-lapse techniques, | review past uses of camera systems
and how they may be applied, or have been applied, to the study of colonial wildlife
with a focus on seabirds.

Camera use in ecology: a brief history

Cameras were first applied to the study of animal movement and the absence or
presence of wildlife but, with technological advances, cameras have become
capable of the remote monitoring popular today. Beginning in the nineteenth
century, photography was initially used to examine patterns of horse running
movements (Guggisberg 1977). Photography was only first applied to remotely
observe wildlife ecology using stand-alone technology at the end of the 1950s in
studies of rodent habitat use (Pearson 1959) and prey types in birds (Royama
1959). Beginning in the 1970s, nest box photography became popular to study
breeding birds and today remains one of the most widespread uses of camera
technology in ecological research (Cutler & Swann 1999). Technological advances
led to trigger-sensor camera use, beginning in the 1980s, which, along with robust
casings for use in harsh weather conditions, allows for autonomous remote
monitoring of wildlife (Swann et al. 2011). Today, these systems often include a
time and date stamp and air temperature record watermarked on each image,
which provides accurate records of the sequence and timing of events.
Improvements in camera systems eventually led to broader applications for time-
lapse photography in the field of ecology, which are relevant for a range of species
and locations and even allow for the tracking of animal movements and recording
the absence or presence of wildlife.

Introduction to time-lapse photography

In contrast to motion-triggered cameras — which record individual, instantaneous
events and are often deployed as transect networks — time-lapse photography is
most applicable to study animals frequently present at a photographed location or
to study frequently repeated behaviours, where regular sampling can be used to
estimate the frequency or timing of activities and census a population (Swann et
al. 2011). Therefore, time-lapse methods are particularly relevant to study colonial
animals such as seabirds and seals, breeding in large groups. The range of camera
equipment types has been reviewed elsewhere (Newbery & Southwell 2009;
Swann et al. 2011), so will not be detailed in this review. It is important to note
that not all camera types are capable of producing time-lapse images or are robust
enough to withstand hazardous weather conditions.

Activity patterns

One of the most fundamental uses of time-lapse photography is to summarise
activity patterns, which allows researchers to better understand time-budgets. In
particular, postures (e.g. sleeping, sitting) have been characterised in several seabird
species (Derksen 1977; Storch et al. 1999; Pacheco & Castilla 2001). However, the
relevance of activity patterns to fitness and population dynamics is often difficult
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to test, so the majority of studies have focused instead on nest activity patterns as
they relate to chick survival. Only a few studies to date have examined feeding
rates or prey types in seabirds using time-lapse photography. For example, one
study used cameras to identify seabird species feeding in aggregations on scallops
discarded from commercial fishing activity in the Irish Sea (Veale et al. 2000), while
another observed feeding patterns on Grey Seal Halichoerus grypus carcasses by
marine scavengers (Quaggiotto et al. 2016). However, all other foraging-related
seabird studies have focused on the rates of provisioning of young by parents
(Duffy 1996; Oswald et al. 2013; Sugishita et al. 2015; Sugishita et al. 2016). These
feeding rates can have direct effects on the survival of chicks, which serves as
another major focus of seabird studies using time-lapse photography techniques.

Breeding success and phenology

Time-lapse studies have proven to be particularly accurate in measuring breeding
success when compared with direct observations (Southwell & Emmerson 2015a),
providing researchers with an excellent alternative to measure fitness when time
in the field is limited. Breeding success has been measured using time-lapse
photography in several species with great accuracy (Lorentzen et al. 2010; Lorentzen
etal. 2012; Wanless et al. 2012; Crofts and Robson 2015; Merkel et al. 2015, 2016).
In addition, time-lapse photography, coupled with other survey techniques, was also
used to understand adult and chick survival in guillemots following the Exxon Valdez
oil spill (Boersma et al. 1995; Boersma & Clark 2001) and after a large population
decline (Harris and Wanless 1984), demonstrating how this technique has potential
to provide baseline information with which to measure change. Infrared time-lapse
cameras have been used to measure breeding success in nocturnal and burrowing
species, which are otherwise particularly difficult to measure and therefore often
lack data on their basic biology (Wanless et al. 2007).

Time-lapse photography can provide information on phenology and nest
attendance, replacing the need for direct observation. For example, a study on
Adélie Penguins Pygoscelis adeliae found that phenological dates obtained from
cameras were accurate but slightly more variable than direct observations;
however, the study captured only one image daily and highlighted the strength of
photographing seabirds at a higher frequency when measuring phenology
(Southwell & Emmerson 2015a). The timing and duration of phenological periods,
nest abandonment, and chick survival have also been studied in multiple penguin
species using time-lapse photography (Black et al. 2018a). Nest attendance
patterns during either incubation or the guard period prove to be one of the most
common uses of time-lapse photography in seabird studies and have been utilised
in the study of a variety of species (Hatch & Hatch 1989; Zador & Piatt 1999;
Grémillet et al. 2000; Johnston et al. 2003; Harding et al. 2005; Harding et al.
2007a, 2007b; Hillman 2012; Arnold & Oswald 2013; Heggay et al. 2015; Harris &
Wanless 2016). In addition, nest occupation was recently observed in Shy
Albatrosses Thalassarche cauta by using multiple cameras to take photographs
simultaneously throughout the breeding season, which were then stitched
together to create colony-wide panoramas (Lynch et al. 2015). Because nest
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attendance is linked to egg temperature, chick growth, and the survival of
fledglings (Deeming 2002), time-lapse photography can serve as a valuable
method to better understand the health of a colony and individual fitness.

Population counts

Estimating population size is the primary method to understand how a colony or
species is changing over both time and space. Counts should ideally take place at
the peak of breeding to standardise data and remove bias across years and sites
(Lynch et al. 2009). Time-lapse photography has been used to examine temporal
and spatial variation in the attendance of Adélie Penguins at breeding sites to
better understand the bias of direct counts (Southwell & Emmerson 2015a) and
when future counts should take place (Southwell et al. 2014, 2015, 2017). Colony
attendance has also been observed using time-lapse cameras installed next to
colonies in a range of seabird species (Harris 1980; Piatt et al. 1990). More novel
methods of counting populations include attaching time-lapse cameras to either
1) kites (Fraser et al. 1999) or 2) unmanned aerial vehicles (UAVs; Ratcliffe et al.
2015). Satellites take images over time in a similar fashion to time-lapse cameras
and have also been used to count populations and identify locations of newly
discovered colonies (Barber-Meyer et al. 2007; Fretwell et al. 2012; LaRue & Knight
2014; LaRue et al. 2014; Lynch & LaRue 2014).

Human-wildlife interactions

Time-lapse photography has been used as a tool to understand the effects of
human disturbance and how scientists may be biasing their own datasets. The
effects of both aircraft and recreational activity on several seabird species (Hillman
2012) and direct human disturbance on Adélie Penguins (Wilson et al. 1991) have
been effectively studied using time-lapse cameras. In addition, to better
understand whether scientific activities influence seabird behaviour, time-lapse
photography was also used to examine the influence of human presence during
direct observations on predation data (Parrish 1995) and the effects of stomach-
retained temperature archival units (STAUs), which are used to study feeding
activity, on chick feeding rates (Wilson et al. 1998). However, more in-depth
studies are needed to establish whether the presence of cameras themselves alter
seabird behaviour and bias data before researchers can ultimately consider time-
lapse photography methods as non-invasive.

Additional uses for time-lapse photography

Beyond the various outlined uses for time-lapse photography, researchers have also
used this method to understand interspecific and intraspecific behaviour, habitat
use and the geographic range of seabirds. Recent technological advances have
decreased the size and weight of cameras, allowing for time-lapse cameras to be
mounted directly on individuals (Sakamoto et al. 2009). Due to the vast number of
recent studies using animal-borne cameras, including a published in-depth review
paper (Moll et al. 2007), | will not discuss the applications of this method here.
Time-lapse photography also serves as an excellent tool to better understand site
fidelity, particularly during the rarely studied period of time outside of the breeding
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season (Mudge et al. 1987; Black et al. 2017; Black et al. 2018b). Cameras with
time-lapse functionality were also fixed on mussel farm buoys to understand how
New Zealand King Shags Phalacrocorax carunculatus use these buoys (Fisher &
Boren 2012), serving as a unique example of how time-lapse cameras can be
applied to the study of habitat use. Time-lapse methods can help us to understand
social behaviour, such as chick aggregations in Gentoo Penguins Pygoscelis papua
(Black et al. 2016) and are relevant to the study of predator-prey interactions,
identifying the causes of egg loss or chick fatality. Lastly, these camera methods
have been used successfully to study chick predation, demonstrating how time-
lapse photography can be customised, depending on the interests of the researcher
and relevant questions being addressed (Powlesland et al. 2002; Sabine et al. 2005;
Wanless et al. 2012; Collins et al. 2014; Merkel et al. 2015).

Capabilities

Time-lapse photography has been applied to the study of a range of interests in
seabird research and has major advantages over alternative methods (Table 1). In
particular, cameras may remove observer biases by allowing researchers to
examine behaviours ex situ, therefore reducing the likelihood that they note
behaviours they expect to see rather than what is actually occurring (Cowardin
1969). However, observer bias may still be present when observing behaviours in
photographs, although this idea is yet to be tested in an animal behaviour and
conservation context. Time-lapse photography can be used to observe seabird
behaviour in places or during times when human observation would be nearly
impossible, including in remote locations, at night using infrared, and during harsh
weather conditions (e.g. Black et al. 2017). The collection of images also provides
researchers with more accurate evidence for later identification of prey species,
phenology events, and elusive behaviours, while also providing a time stamp for all
events. Most notably, time-lapse cameras are cost effective and can provide
researchers with large savings in time and money spent on fieldwork. Because
cameras can provide more frequent observations, they are also able to observe
more obscure behaviours or elusive species, depending on their set frequency.
Time-lapse photography may also be preferred over videography, as it often
provides researchers with the same high-resolution detail of the focal species’
behaviour with less time needed to process the data.

Table 1. Capabilities and limitations of time-lapse cameras in seabird studies.

Capabilities Limitations
Removes observer bias Mechanical failures
Deployable in remote locations Programming errors
Functions in harsh weather conditions Regular maintenance
Records nocturnal behaviours Affordable options produce lower resolution images
Records elusive behaviours Potential nest disturbance and predator attraction
Saves time and money during fieldwork Extensive networks expensive to maintain

High volume of images to manage and note behaviours
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Table 2. Overview of practicalities researchers must consider during the time-lapse camera preparation
(batteries and storage capacity), set-up (settings and placement), data retrieval, and post-processing phases.

6

Phase Specifics Practicalities to consider
Preparation Batteries Disposable
Rechargeable
Alkaline and lithium
External gel cell
Solar panels

Storage capacity Secure digital (SD) card size

Set-up Settings Resolution
Frequency
Time of day

Start and end date

Placement Ecological questions to answer
Distance to subject
Angle

Data retrieval In situ collection
Satellite recovery

Post processing Storage
Organisation
Metadata extraction
Available software
Citizen science
Computer vision automation

Limitations

Naturally, there are disadvantages to time-lapse camera use, some of which may
become irrelevant as technology progresses (Table 1). In a practical sense, cameras are
prone to mechanical failures and programming errors and need regular maintenance,
depending on the frequency of photographs (Table 2). In most cases, data cannot be
obtained until a camera is visited for maintenance: a difficult task in remote regions
(Table 2). Time-lapse cameras can produce image outputs in a range of qualities with
some affordable options providing lower quality data (Table 2). Also, depending on the
study species, it may be difficult to study multiple burrows at once in ground-nesting
seabirds, making camera studies less affordable, and small seabirds may not be easily
detected in the camera frame, leading to poor quality data. As mentioned, studies have
not yet fully addressed how cameras influence seabird behaviour so there is a
potential for nest disturbance, particularly abandonment (Cowie & Hinsley 1988), and
either predator attraction or reduction to occur (Richardson et al. 2009) as a result of
camera installation. However, cameras are typically fast to install and likely less
invasive than direct observations. To date, there is little research on the potential
effects of time-lapse or motion-trigger photography on animal behaviour and future
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research should focus on the extent that these techniques may be altering behaviour
to prove the non-invasiveness of camera use. In addition, if studying more elusive
behaviours, such as predation events, or species across a large geographic range,
camera purchases and maintenance can become expensive and logistically difficult, as
both batteries and computer memory are generally limited.

Learning from other taxa

Although many studies have used time-lapse techniques to understand seabird
ecology, seabird researchers can expand their study aims by examining how
research on other taxa has used camera traps. For example, cameras methods can
help us to understand environmental variables at study sites (e.g. sea ice, glaciers,
volcanoes; Harrison et al. 1992; Smith et al. 2003; Orr & Hoblitt 2008; Ahn & Box
2010; Overeem et al. 2011, Figure 1). Aerial counts of birds have long served as a
customary census technique and using time-lapse photography can increase the
accuracy of seabird counts (Buckland et al. 2012). In cases where individuals can
be identified either by natural markings or banding, as is the case in African

HCSO00 HYPFRF ITRF

Figure 1. Example time-lapse camera trap image of Gentoo Penguin Pygoscelis papua colony, depicting the
date and time stamp, temperature stamp, measurable environmental variables, and the region of interest.
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Penguins Spheniscus demersus (Sherley et al. 2010), researchers can use time-lapse
photography to study the physical condition of individuals (Kucera & Barrett
2011), a species range using time-lapse cameras along transects (Silveira et al.
2003), the parental investment of males compared to females, population
structure (Ahumada et al. 2011; Hariyadi et al. 2011), and population estimates as
an alternative to mark-recapture methods (Gardner et al. 2010). For an in-depth
review of past studies using camera traps to study alternative taxa, including those
using time-lapse photography, see Cutler & Swann (1999) and Swann et al. (2011).

Technological advances

As technology advances, camera systems are becoming more powerful, relevant, and
efficient, particularly when studying seabirds inhabiting remote locations. Battery life
and storage capacity have increased, allowing for greater time between servicing and
lighter, smaller, more robust cameras (Table 2). Researchers can also take advantage
of solar panels and rechargeable external batteries to reduce battery waste, and
satellites can be used to obtain data more rapidly (Table 2). However, as efficiency
increases and the usage of camera systems increases, it is necessary to standardize
data collection across sites and species to improve comparability across studies (e.g.
CCAMLR methods, CCAMLR 2004; Southwell & Emmerson 2015b; JNCC methods,
Walsh et al. 1995). The research community would benefit from a data repository for
camera data, such as those in place for tracking movements (Movebank, Kranstauber
et al. 2011) and genetics (Genbank, Benson et al. 2008). Ultimately, the largest
disadvantage of time-lapse photography is also its biggest advantage; enormous
amounts of data are produced, which need to be processed. Cameras set to time-
lapse mode typically take thousands of images, which, once retrieved, need to be
noted for the focal behaviours to obtain usable data. This process can be laborious
and time-consuming; however, solutions do exist to manage a high volume of
images. A variety of software types are available to provide researchers with tools to
manage databases and annotate images (Scotson et al. 2017); however, this step in
the research process is often particularly labour intensive. To speed up post-
processing, the use of both citizen science participation (e.g. Penguin Watch; Jones et
al. 2018) and computer-vision and deep-learning automation (e.g. Dickinson et al.
2008; Dickinson et al. 2010; Gardner et al. 2010; Duyck et al. 2015) have been
successfully explored; in the future these automation algorithms must be refined and
made accessible to the research community at large.

Conclusion

Overall, for the study of colonial wildlife, time-lapse photography proves to be a
cost-effective (Southwell & Emmerson 2015a) and relatively non-invasive method,
which can help researchers save limited fieldwork time. Because of these
advantages, and the method's relative ease of use, time-lapse photography can
be — and has been — used to expand our knowledge of both interspecific and
intraspecific behaviours and population dynamics over time and space, specifically
in areas where studies were previously logistically impossible (Figure 2). Time-lapse
photography can effectively replace other methods, including direct observation,
tracking, surveys, and counts and are particularly efficient when studying elusive
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Camera traps Animal-bourne cameras

Movement patterns
Breeding success
Phenology
Population counts
Human-wildlife interactions
Inter-specific behavior
Intra-specific behavior
Habitat use

Figure 2. Camera traps, animal-borne cameras, and satellite images taken at set frequency time-lapse intervals
can provide information on a variety of seabird behaviours.

and nocturnal species, as well as those sensitive to human presence. In addition,
time-lapse methods can provide information on previously ‘unseen behaviour’
such as activity at night and during harsh weather conditions. However, researchers
must budget time for troubleshooting, maintenance, and post-processing. To speed
up the processing of image data, ecologists would benefit from greater collabo-
ration with researchers from other disciplines, particularly computer scientists, to
apply techniques that automate image notation and categorization, including
those implementing computer-vision and deep-learning algorithms.
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